Question 1
Calculate the equilibrium constant at $25^{\circ} \mathrm{C}$ for a reaction for which $\Delta G^{\circ}=-4.22 \mathrm{kcal} / \mathrm{mol}$.
620.254
2481.02
-1240.51
1240.51

Question 2 2 pts

The reaction
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+2 \mathrm{D}$
has an equilibrium constant of 3.7×10^{-3}. Consider a reaction mixture with:
$[\mathrm{A}]=2.0 \times 10^{-2} \mathrm{M}$
$[B]=1.7 \times 10^{-4} \mathrm{M}$
$[\mathrm{C}]=2.4 \times 10^{-6} \mathrm{M}$
$[\mathrm{D}]=3.5 \times 10^{-3} \mathrm{M}$
Which of the following statements is definitely true?

The reverse reaction will occur to a greater extent than the forward reaction until equilibrium is established.

The forward reaction will occur to a greater extent than the reverse reaction until equilibrium is established.

No conclusions about the system can be made without additional information.
Question $3 \longrightarrow 2$ pts

The reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
has an equilibrium constant $\left(K_{\mathrm{c}}\right)$ of 4.0×10^{8} at $25^{\circ} \mathrm{C}$. What will eventually happen if 44.0 moles of $\mathrm{NH}_{3}, 0.452$ moles of N_{2}, and 0.108 moles of H_{2} are put in a 10.0 L container at 25°

It is impossible to know what will happen unless we know what the equilibrium constant is at 298 K.

More N_{2} and H_{2} will be formed.
More NH_{3} will be formed.
Nothing. The system is at equilibrium.
Question 4 2 pts

Consider the reaction:
$\mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g})$
If the initial concentration of $\mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$ is 1.0 M and x is the equilibrium concentration of $\mathrm{CO}(\mathrm{g})$, what is the correct equilibrium relation?
$K_{c}=\frac{256 x^{4}}{(1.0-4 x)}$
$K_{c}=\frac{x^{4}}{\left(1.0-\frac{x}{4}\right)}$
$K_{c}=\frac{x^{5}}{\left(1.0-\frac{x}{4}\right)}$
$K_{c}=\frac{4 x}{(1.0-4 x)}$

Question 5

Suppose the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
has an equilibrium constant $\mathrm{K}_{\mathrm{c}}=49$ and the initial concentrations of H_{2} and I_{2} is 0.5 M and of HI is 0.0 M . Which of the following is the correct value for the final concentration of $\mathrm{HI}(\mathrm{g})$?
0.778 M
0.219 M
0.250 M
0.599 M
Question 6 2 pts

The system
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
is at equilibrium at a fixed temperature with a partial pressure of H_{2} of 0.200 atm, a partial pressure of I_{2} of 0.200 atm , and a partial pressure of HI of 0.100 atm . An additional 0.26 atm pressure of HI is admitted to the container, and it is allowed to come to equilibrium again. What is the new partial pressure of HI ?
0.104 atm
0.464 atm
0.152 atm
0.360 atm
Question 7
At $990^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=1.6$ for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
How many moles of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are present in an equilibrium mixture resulting from the addition of 1.00 mole of $\mathrm{H}_{2}, 2.00$ moles of $\mathrm{CO}_{2}, 0.75$ moles of $\mathrm{H}_{2} \mathrm{O}$, and 1.00 mole of CO to a 5.00 liter container at $990^{\circ} \mathrm{C}$?
1.1 mol

O 1.0 mol
0.60 mol
1.7 mol

Question 8
What happens to the concentration of $\mathrm{NO}(\mathrm{g})$ when the total pressure on the reaction
below is increased (by compression) when it is at equilibrium?
$3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$
it remains the same
it decreases
it increases
it is impossible to tell

Question 9
Consider the following reaction:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
where $\Delta \mathrm{H}_{\mathrm{rxn}}-198 \mathrm{kJ}$. The amount of $\mathrm{SO}_{2}(\mathrm{~g})$ at equilibrium increases when...
SO pts
SO_{3} is removed.
the volume is increased.
more oxygen is added.
the temperature is decreased.

Question $10 \quad 2$ pts

Suppose the reaction mixture

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
is at equilibrium at a given temperature and pressure. The pressure is then increased at constant temperature by compressing the reaction mixture, and the mixture is then allowed to reestablish equilibrium. At the new equilibrium...

[^0]
Question 11

Consider the system:

$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
at equilibrium at $25^{\circ} \mathrm{C}$. If this is an exothermic reaction and the temperature was raised, would the equilibrium be shifted to produce more $\mathrm{N}_{2} \mathrm{O}_{5}$ or more $\mathrm{N}_{2} \mathrm{O}_{4}$?
more $\mathrm{N}_{2} \mathrm{O}_{5}$
O there would be no change
more $\mathrm{N}_{2} \mathrm{O}_{4}$
it is impossible to tell

Question 12

2 pts

The system
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
is at equilibrium at some temperature. At equilibrium, a 4.00 L vessel contains 1.00 mole $\mathrm{CO}_{2}, 1.00$ mole $\mathrm{H}_{2}, 2.40$ moles $\mathrm{H}_{2} \mathrm{O}$, and 2.40 moles CO . How many moles of CO_{2} must be added to this system to bring the equilibrium CO concentration to $0.669 \mathrm{~mol} / \mathrm{L}$?
0.429 moles
0.498 moles
0.069 moles
0.993 moles

Question 13

The figure below represents a reaction at 298 K .

extent of reaction \longrightarrow

Based on the figure, which of the following statements (if any) are FALSE?

At point D , the reaction will move toward the reactants to get to equilibrium.
For this reaction, ΔG° is negative.
At point C , the system is at equilibrium.
None of the other statements are false.

At point $\mathrm{B}, \mathrm{Q}<\mathrm{K}$.
Question 14
Given the hypothetical reaction:
$\mathrm{X}(\mathrm{g}) \rightleftharpoons \mathrm{Y}(\mathrm{g})$
Predict what will happen when 1.0 mol Y is placed into an evacuated container.
Q will increase until $\mathrm{Q}=\mathrm{K}$.

Nothing. The products are already formed, so no reaction occurs.
Q will decrease until $\mathrm{Q}=\mathrm{K}$.
ΔG° will decrease until $\Delta G^{\circ}=0$.

Question 15
Consider the reaction:
$\mathrm{C}(\mathrm{s}$, graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta G^{\circ}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Which of the following is a possible value of K for this reaction?
0.56
10^{70}
10^{-70}
-0.56

Question 16
The equilibrium constant K for the synthesis of ammonia is 6.8×10^{5} at 298 K . What will K
be for the reaction at 375 K ?
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H^{\circ}=-92.22 \mathrm{~kJ} \mathrm{~mol}^{-1}$
326
1.42×10^{9}
6.75×10^{5}
6.85×10^{5}

[^0]: O there is less ammonia present than there was originally
 there is the same amount of ammonia present as there was originally.
 O there is more ammonia present than there was originally.
 the nitrogen is used up completely.

